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Abstract: It is well known that among the first motivations for modern control
theory were dynamic optimization problems in rocket launching and navigation
in aerospace. These problems had become especially important in the forties
and fifties due to requirement to minimize various costly resources and design
parameters, such as flight time, amount (mass) of fuel, weight of the spacecraft,
the drag forces and other items. This had to be done under various restrictions
on control capacities and other complicating factors , such for example, as incom-
plete information on the system. In the precious funds of applied mathematical
techniques there had long been stored an adequate tool for such problems: it is
the Calculus of Variations. Problems in flight dynamics had become the earliest
serious technical object for its application. A large number of new basic ideas
for adapting Calculus of Variations to modern control problems and synthesizing
them into modern control theory were elaborated in the course of investigations
in flight dynamics. This presentation traces some seminal investigations, which
were crucial for related theoretical developments in former Soviet Union and
present Russia and had also influenced related research beyond national borders.
Such investigations had good historical precursors in the earlier mathematical
works of P.L.Chebyshev, A.M.Lyapunov, A.A.Markov, the works in mechanics by
N.E.Zhukovski and S.A.Chaplygin and the activities in dynamic systems theory
of the thirties (A.A.Andronov, L.S.Pontryagin et al.).

The present paper is confined only to deterministic problems in trajectory analysis,
control and optimization within the framework ofmathematical theory of controlled
processes. The national community of researchers involved in these topics was
enormous, including those in the Academy of Sciences, the Universities and the
numerous institutions and plants supervised by related industrial ministries. While
giving tribute to all those involved, this paper does not claim to give a full review of
available publications, concentrating on what the authors believe to be the seminal
issues in the field and their role in future directions of research. This publication
will therefore inevitably have a subjective flavour. We sincerely apologize to all
those whose contributions may have been missed.
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1. CONTROL IN FLIGHT DYNAMICS

As mentioned in the above, the early motiva-
tions for modern control theory were problems
of dynamic optimization in rocket launching and
navigation in aerospace. The first mathematical
techniques to be used for these problems were
sought for within the Calculus of Variations. In-
deed, flight dynamics problems seem to be the
earliest serious technical object for its application.
And indeed, a large number of new basic ideas
for adapting Calculus of Variations to problems in
control and synthesizing these within a framework
for control theory were elaborated precisely in the
course of investigations in flight dynamics. How-
ever the new applied problems of optimal control
for dynamic processes essentially differed from
canonical propositions in Calculus of Variations.
The equations of motion for aircraft’s mass center
in an inertial frame of reference have the form

mV̇ = R+G+ P , ṙ = V, ṁ = −βf , (1)

where r and V, are, respectively, the radius vector
and the velocity vector of the aircraft’s mass
center; m is the mass; βf is the mass (propellant)
consumption per second; R is the resultant vector
of the aerodynamic forces, P is the engine thrust
vector; G = mg is the aircraft weight; and g is the
gravitational acceleration. As a rule, the motion
of aircraft is considered in the wind system of
coordinates:

V̇ = (1/m)[P cos(u − θ) cosβ−
− X cos(−β) + Z sin(β)− G sin θ],

θ̇ = (1/mV ){[sin(α − θ) cos γ+
+ cos(α − θ) sinβ sin γ]− X sinβ sin γ+
+ Y cos γ − Z cosβ sin γ − G cos θ},

ψ̇ = (1/mV cos θ){P [sin(α − θ) sin γ−
− cos(α − θ) sinβ cos γ] +X sinβ cos γ+
+ Y sin γ + Z cosβ cos γ},

ḣ = V sin θ, ṁ = −βf , ẋ = V cos θ

(2)

where V is the velocity, h is the altitude, x —
the range on the Earth’s surface; θ — the angle of
inclination of the trajectory to the local horizon;
α — the angle of attack; ψ — the yaw angle; β
— the angle of slide slip; γ is the angle of bank;
θ — the angle between the thrust vector and the
velocity vector; P — the engine thrust, which is
a deterministic function of h, V and βf , X, Y , Z
are the aerodynamic drag, the lift, and the side
force respectively:
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X = cx(M,α)(ρ(h)V 2/2)S;

Y = cy(M,α)(ρ(h)V 2/2)S;

Z = cz(M,α)(ρ(h)V 2/2)S,

(3)

where ρ(h) is the atmospheric density; S is the
effective wing area; M the Mach number, equal
to the ratio of the flight velocity to the velocity of
sound a(h) at given altitude; the cx, cy, cz are the
aerodynamic coefficients.

Equations (1) and (2) relate two essentially dif-
ferent groups of variables. The variables r, V, m
with components h, V , θ, ψ, x, z and m in the
wind system of coordinates, enter the equations
together with their first derivatives and thus char-
acterize the state of the process; the number of
these variables is equal to the order of the system.
The variables α, β, γ, φ and βf enter the equa-
tions without their derivatives and thus are the
controls. Classification of the variables into phase
coordinates and control elements is closely linked
with the particular choice of mathematical model
for the system being controlled. In some problems
the mathematical model (system (1)) does not
provide a sufficiently accurate description of the
actual behaviour of the aircraft, and it can be
improved by supplementing it with an equation of
the angular motion of the aircraft about its mass
center.

The variables α, β, and γ become the phase coor-
dinates, and the rudder deflection angles assume
the role of control elements. On the other hand, in
some problems, certain phase coordinates may be
upgraded to the status of control elements without
detrimental effects; this would involve dropping
the corresponding differential equations from the
mathematical model. This approach was actually
applied by some authors in solving the problems
of powered ascent of aircraft when the trajectory
inclination angle θ was used as a control element.
In addition to differential equations, we have to
consider a variety of constraints on the variables,
which stem from the particular properties of the
system being controlled. The following typical
constraints are imposed on aircraft flying in the
denser atmospheric layers: the altitude h ≥ 0, the
angle of attack αmin ≤ α ≤ αmax; the dynamic
head q = 1/2ρV 2 ≤ qmax, the total overload N =
[X2(h, V, a) + Y2(h, V, a)]1/2G ≤ Nmax, and the
surface temperature Tw(h, , V, a) ≤ Tw,max. These
constraints define conditions for actual (current)
time t < T . Certain additional conditions are
also imposed on the initial and final states of the
system. For example, a vehicle may be designed
to transport a payload from starting point h0, x0

on the ground, where it was at rest (V0 = 0) with
starting mass m0, to a circular orbit at assigned
altitude h1 (θ1 = 0, V1 = Vcir). The latter con-
ditions define the terminal state set M in (??).
Examples of optimality criteria for aircraft are



that the flight range
∫ ϑ

τ
V cos θdt should achieve

maximum, the flight duration T = ϑ − τ or fuel
consumption m(τ) − m(ϑ) should achieve mini-
mum, the final altitude h(ϑ) or the final velocity
V (ϑ) should achieve maximum.

The early work in this field was due to D. E. Okho-
tsimsky, T.M.Eneyev, V.A.Egorov and their col-
leagues (see Okhotsimsky, 1946; Okhotsimsky and
Eneyev, 1957; Egorov, 1958), as well as to I. V. Os-
toslavskii and A. A. Lebedev (1946). We shall
return to their contributions after a tour to basic
theory.

2. THEORETICAL ACHIEVEMENTS.
CONTROL THEORY. PONTRYAGIN’S

MAXIMUM PRINCIPLE

The process of formalizing and analyzing applied
problems of control generated an array of new
mathematical ideas. In the nineteen-fifties and
sixties this let to the initiation of a new branch of
applied mathematics, namely, the “mathematical
theory of optimally controlled processes” or, a
broader engineering version known simply as “the
theory of control”.

Loosely speaking, control theory provides us with
two basic methods to investigate optimal pro-
cesses: the Maximum Principle of L.S.Pontryagin
— a generalization for nonsmooth functions and
constraints of the Euler–Lagrange variation method
and the method of Dynamic Programming due
to R. Bellman — a generalization of the classical
Hamilton–Jacobi method which has been recently
propagated to nonsmooth functions as well in the
form of generalized “viscosity solutions” and their
equivalents. The first method is adequate for the
problem of open-loop programmed control while
the second method is for the problem of feedback
“closed-loop” control synthesis.

We now present a description of Pontryagin’s
Maximum Principle which was published in a se-
ries of pioneering publications (Pontryagin, 1958;
Pontryagin et al., 1962), and at the ICM (In-
ternational Congress of Mathematicians) in 1958
(Edinburgh) and at the First IFAC Congress in
Moscow in 1960.

Pontryagin’s Maximum Principle is a proposition
which gives relations for solving the variational
problem of optimal open-loop control. In general
this is a nonclassical variational problem which
allows to treat functions and constraints that are
beyond those considered in classical theory, but
are very natural for applied problems.

The Maximum Principle was formulated in 1956
by L. S. Pontryagin, and further developed by
himself and his associates V. G. Boltyanski,

R. V. Gamkrelidze, E. F. Mischenko followed
by many other investigations. It was motivated
by new problems in automation and aerospace
engineering, initiating the “mathematical theory
of controlled processes”. The maximum principle
was and is broadly used for solving applied prob-
lems of control and other problems of dynamic
optimization. It has triggered numerous gener-
alizations and applications. The basic necessary
conditions from classical Calculus of Variations
follow from the Maximum Principle. In many
Western publications the Maximum Principle of
Pontryagin is also referred to as the “the Min-
imum Principle” (By changing signs in some of
the upcoming relations the “maximum condition”
of the sequel may be rewritten in the form of a
minimum condition).

We now proceed with a more detailed formulation.

The Typical Problem of Open-Loop Control. One
of the typical problems of optimal open-loop con-
trol is as follows. Given are the vector-valued
equations of system model

dx/dt = f(x, u), (4)

where x ∈ IRn is the n-dimensional state of
the system and u ∈ IRm — the m-dimensional
control. Also given are the starting point x0 and
the terminal point x(1):

x(0) = x0, x(τ) = x(1). (5)

Relations (??) are the boundary conditions. The
range of the control is the constraint set P.
Problem OOLC of Optimal Open-Loop Control is
to find such a function u(t) which would steer the
system from starting point x0 to terminal point
x(τ) = x(1) under constraint

u(t) ∈ P, (6)

while minimizing an integral cost functional

J = J(u(·), x(·)) =
∫ ϑ

τ

f0(t, x(t), u(t)) dt (7)

of (??), with ϕ(x) ≡ 0, under boundary condi-
tions (5).

Here x(·) stands for the entire function x(t), t ∈
[0, τ ]. The terminal point x(τ) = x(1) may be
substituted by a terminal target set M and the
time τ may be either fixed or free. Note that
the term “cost functional” is usually applied to
problems of minimization while for maximization
problems the term “performance index” is more
common. The fact that the control u = u(t) is
selected among functions of time t indicates that
we have the problem of open-loop control.

The problem in which f0(x, u) ≡ 1 and the time τ
is free brings us to J = τ = minu. This is the time-
optimal control problem where one has to select



a control u(t) which steers the system from x0 to
x(1) in minimal time.

We shall say that u(t), x(t), is a pair if u(t) is
the control which generates the trajectory x(t) of
(??), with x(0) = x0.

The solution to the Problem of OOLC is the pair
{u0(t), x0(t)}, where u0(t) is the optimal control
and x0(t) — the optimal trajectory. Clearly, the
optimal control must satisfy the constraint (6) and
the optimal trajectory must satisfy the boundary
condition (5). The pair {u0(t), x0(t)} must min-
imize the cost criterion (7). (In this article we
always presume that our problem is to minimize
J . If necessary to maximize J , we just have to
minimize −J).

Loosely speaking, Pontryagin’s Maximum Prin-
ciple gives the necessary conditions for a control
u0(t) to be the OOLC.

The Maximum Principle. We will now formulate
the local necessary conditions of optimality for
the OOLC Problem — Pontryagin’s Maximum
Principle.

Consider a scalar function (the Hamiltonian)

H(Ψ, x, u) = ψ0f0(x, u) + (ψ, f(x, u))

of the variables Ψ, x, u, where Ψ = {ψ0, ψ} ∈
IR(n+1), ψ ∈ IRn, (p, q) is the scalar product of p,
q.

Once H(Ψ, x, u) is given, it is possible to assign to
this function a related system of ODE’s (ordinary
differential equations)

dx

dt
=

∂H
∂ψ

,
dψ

dt
= −∂H

∂x
, (8)

or, in more detail,

dxi

dt
=

∂H
∂ψi

,
dψi

dt
= −∂H

∂xi
, (i = 1, . . . , n).

Note that the first equation in (2) is (??) (!). This
is the so-called canonical Hamiltonian system.

Here, for a given pair u(t), x(t), the second system
of (2) should be treated as follows

dψ

dt
= −∂H(Ψ, x(t), u(t))

∂x
, (9)

Main Theorem (The Maximum Principle). Sup-
pose u0(t) is an open-loop control which steers
system (??) from x0 = x(0) to x(1) = x(τ),
while x0(t) is the respective trajectory. In order
that the pair u0(t), x0(t) would optimize the cost
functional (1), it is necessary that there would
exist a constant ψ0 ≤ 0 and a solution ψ(t),
to the system (3), such that the vector-function
Ψ(t) = {ψ0, ψ(t)} �= 0 for all t ∈ [0, τ ] and
for all such t the control u0(t) would satisfy the
maximum condition

max{H(Ψ(t), x0(t), u) |u ∈ P} =
= H(Ψ(t), x0(t), u0(t)) ≡ 0. (10)

The time-optimal problem has a simpler formula-
tion.

The Time-Optimal Control Problem. Other Per-
formance Indices. The time-optimal problem of
OOLC is to steer the system (4), (6) from x(0) =
x0 to x(τ) = x(1) in minimal time. As indicated
in the above, for the time-optimal problem the
function f0(t, x) ≡ 1 and the time τ is free. Then
there is no need of multiplier ψ0. The Hamiltonian
H = H now looks like

H(ψ, x, u) = (ψ, f(x, u)) =
n∑

i=1

ψifi(x, u),

and the equation (9) like

dψi

dt
= −∂H(ψ, x(t), u(t))

∂xi
, i = {1, . . . , n} (11)

Remark 3.1 The maximum principle is far more
simpler for linear systems where under additional
conditions of controllability type it is also a suf-
ficient condition of optimality. A complete the-
ory of linear controlled systems was developed
by N.N.Krasovski (1968) using the techniques of
functional analysis.

Interpretations and generalizations of the Maxi-
mum Principle. The maximum principle is closely
related to classical calculus of variations, but
is a step forward in the direction of treating
nonsmooth functions and nonclassical constraints
which are very common in engineering and other
types of applied problems. The connections with
classical calculus and the differences that arise are
discussed in publications given in the bibliogra-
phy.

Among the generalizations of the Maximum Prin-
ciple are those directed on more complicated non-
smooth constraints — state constraints, mixed
constraints on the controls and trajectories, func-
tional and nonclassical integral constraints, etc.
The treatment of these problems is usually based
on the techniques of nonlinear analysis and “non-
differentiable” dynamic optimization. Here the
functions f , f0, φ and the other functions involved
in the formulation of the problem are allowed to
be nondifferentiable. The adjoint equations may
have multivalued right-hand sides, turning into
differential inclusions and the numerical solution
schemes are more complicated than in the stan-
dard case. Grasping the techniques of these gen-
eralizations requires special knowledge which may
lie beyond the scope of traditional engineering
mathematics.

A special topic are the conditions when the Max-
imum Principle is sufficient for optimality in the



general case. This question is closely related to the
connections between the Maximum principle and
Dynamic Programming . Other special classes of
OOLC problems are those when the solution leads
to singular controls. Such controls appear when
the Maximum Principle degenerates (H(x, u, ψ) ≡
0) and they have to be found through additional
procedures involving higher order necessary con-
ditions. (The topics of the present paragraph lines
are discussed below in Section 4).

The Maximum Principle was also propagated to
discrete systems, systems with distributed param-
eters, systems with after-effects including time-
delays, and other types of infinite-dimensional
systems (J-L. Lions in France, A. G. Butkovski,
Yu. V. Egorov, A. I. Egorov et al. in USSR).
It was also modified for stochastic systems. (One
should note however, that for stochastic systems
a realistic and practically applicable setting is the
one of feedback control or Closed-Loop Optimal
Control, effectively treated within the techniques
of Dynamic Programming.)

Rather general classes of variational problems
with non-classical constraints (including non-
strict inequalities) or with nonsmooth cost func-
tionals are used to be called problems of Pontrya-
gin type. The demand for solving such problems
stimulated new research in differential equations
and differential inclusions, nonlinear analysis and
extremal problems, numerical methods and other
related domains.

Among the significant achievements in developing
modern-type variational methods for nonsmooth
problems were those suggested by A. A. Dubovit-
ski and A. A. Milyutin (1965), as well as by
V. F. Demianov (1972) and B. N. Pschenichniy
(1971) in Kiev, and their associates. A propa-
gation of classical calculus of variations to non-
classical problems was developed by V. A. Troit-
skii (1971). Active research on optimal control
was carried out in Minsk by R. F. Gabasov and
F. M. Kirillova.

On numerical methods A crucial element for
effectively applying the Maximum Principle as
well as other techniques are numerical meth-
ods and reliable software. Among the first nu-
merical procedures for the Maximum Principle
were the algorithms developed by I. A. Krylov
and F. L. Chernousko (1972). Very significant
contributions in numerical techniques and algo-
rithmic developments belong to R. P. Fedorenko
(1964) of the Institute of Applied Mathematics
and Yu.G.Evtushenko of the Computing Center
and their colleagues at the Russian Academy of
Sciences. A considerable number of applied algo-
rithms was developed at institutions and plants
within the system of related industrial ministries.
At the same time original solutions and numer-

ical methods were developed by A. E. Bryson,
N. J. Kelley, G. Leitmann, E. Polak and their
colleagues in USA.

3. THEORETICAL ACHIEVEMENTS.
DEVELOPMENTS IN DYNAMIC

PROGRAMMING

The method of Dynamic Programming (DP) is
attributed to Professor R. Bellman of Rand Cor-
poration and University of South California at
Los Angeles (Bellman, 1957). Its continuous-time
version is a very broad generalization of classical
Hamilton–Jacobi techniques to variational prob-
lems of control. The method is connected with
embedding the construction of the optimal process
into a family of identical problems with arbitrary
initial conditions. This requires that the control
would depend both on time and the state space
variable, being presented in a feedback (“closed-
loop”) form. The first indications on engineer-
ing solutions to specific problem of control syn-
thesis were given by Flugge–Lotz in Germany,
D. W. Bushaw in USA and A. A. Feldbaum (1955)
in USSR. In fact, the work of Feldbaum on feed-
back control for automation served as an applied
motivation for the development of the Maximum
Principle, as indicated in (Pontryagin, 1958).

In fact, a considerable amount of research was
fulfilled by research groups at the Institute of
Control Problems in Moscow, particularly, under
the leadership of B.N.Petrov who also initiated
research on the theory of invariance — the condi-
tions of independence of the system outputs from
the inputs (Petrov, 1960). Applied problems of
flight control were investigated by A. M. Letov
(1969), the first President of IFAC. New results
in system identification and adaptive control were
introduced by B. T. Polyak and Ya. Z. Tsypkin
(1980).

The Value Function. A typical DP problem of
control synthesis in continuous time is as follows.
Given are system (4), (6) and state constraint
Y(t) (a set-valued function with compact values,
continuous in t). One is to find a value function

V (τ, x) = min
u

{∫ ϑ∧σ

τ

f0(t, x, u)dt+

+ ϕ0(ϑ, x(ϑ)) ∧ ϕ1(σ, x(σ))

}

along the trajectories of system (4), (6). Here
ϕ0, ϕ1 are the terminal functions. The trajectory
x(t, τ, x) starts at time τ from point x ∈ intY(t)
and σ is the first instant of time when it reaches
the boundary ∂Y(σ) of set Y(σ). Then, if σ < ϑ,
the process stops and the integration ends at t = σ
with terminal function ϕ1(σ, x(σ)). Otherwise the



integration ends at fixed time ϑ with terminal
function ϕ0(ϑ, x(ϑ)).

A sufficient condition for V (τ, x) to be the value
function is to satisfy the next HJB (Hamilton–
Jacobi–Bellman) equation

Vt +min{(Vx, f(t, x, u)) + f0(t, x, u)} = 0

under boundary conditions

V (ϑ, x) = ϕ0(ϑ, x), if x(t) ∈ intY(t), t ∈ [τ, ϑ),

or V (σ, x) = ϕ1(σ, x), if σ < ϑ, x(t) ∈ intY(t),
t ∈ [τ, σ), x(σ) ∈ ∂Y(σ).
The solution to the control problem in this setting
is given by a function u0 = u0(t, x) of both
time and state which yields a synthesized strategy
defined for any feasible “position” {t, x}. In order
that the problem would be solved it is sufficient,
beside solving the HJB equation, to ensure that
system ẋ = f(t, x, u0(t, x)) does have a solution
in some appropriate sense.

The first general solution to a control synthesis
problem was the the one of “linear-quadratic”
control — on minimizing a quadratic integral
cost functional for linear systems. It was broadly
known as the “R. Kalman — A. M. Letov”
solution. Various versions of control problems
with quadratic cost were due to A. I. Lur’ye,
V. A. Yakubovich et al. in Leningrad (now
St.Petersburg) and to N. N. Krasovski et al. in
Sverdlovsk (now Yekatherinburg).

However, at the early stages of development, this
essential approach was mostly not feasible for
continuous-time systems. This is due to the fact
that for most applied problems with constraints
given by inequalities, the value function V (t, x)
turned out to be nondifferentiable. The difficulty
was surpassed by applying new results in nonlin-
ear analysis which led to he introduction of gener-
alized, so-called “viscosity” solutions. The initiat-
ing ideas for these (due to professors O. A. Oleinik
(1957) and S. N. Kruzhkov (1970) of Moscow
State University) were developed in final form
by professors P-L. Lions (France), M. G. Cran-
dall and L. C. Evans (USA) and their colleagues
M. Bardi (Italy) and H. Ishii (Japan). An indepen-
dent equivalent “minmax” form of solution was
introduced by by A. I. Subbotin (Russia) (1995).
The generalized “nonsmooth” theory of Dynamic
Programming is also among the basic tools for
developing the theory of game-theoretic problems
of dynamics which allows to treat problems of
guidance and trajectory tracking under distur-
bances of various kind.

The achievements in developing continuous-time
Dynamic Programming allowed to formalize an
array of problems on control synthesis under
various types of state constraints and obstacle
problems (see papers by A. B. Kurzhanski and

Yu. S. Osipov (1968; 1969)). These results are rel-
evant for example, for automatic guidance of un-
manned aircraft in mountainous terrain, for calcu-
lating safety zones in motion planning and related
problems (Gusev and Kurzhanski, 1971; Kurzhan-
ski, 2004).

Once the value function is known, one may con-
struct a backward reachability set W (t) = {x :
V (t, x) ≤ µ for a given µ which ensures that W (t)
is nonempty.

The Problem of Control Synthesis. Given set W
find control strategy u(t, x) (U(t, x)) that steers
system (4) from any position {τ, x}, x ∈ W (t)
ensuring V (t, x) ≤ µ.

Then each of the strategies u(t, x) (U(t, x)) may
be sought for directly, through a unified scheme.
Namely, considering function V = d2(x,W (t)),
introduce either the single-valued strategies

u0(t, x) ∈ U(t, x) = argmin{
exp(−2λt)(Vx(t, x), f(t, x, u))|u ∈ P(t)},

λ > 0, or the set-valued strategies U0(t, x) =
U(t, x), depending on the type of system and
the definition of solutions used. (Here λ is the
Lipschitz constant in {t, x} for function f).

The problem here is that the proposed strategy
u0(t, x) or U0(t, x) must satisfy in some appropri-
ate sense the equation

ẋ = f(t, x, u0(t, x)), (12)

or the differential inclusion

ẋ ∈ f(t, x, U0(t, x)). (13)

For a general nonlinear system of type (12) the
solution may be defined as a “constructive mo-
tion” introduced in (Krasovski, 1970), (Krasovski
and Subbotin, 1998), while in case of linear sys-
tems (f(t, x, u) = A(t)x + B(t)u) with convex
compact constraints on the controls the solutions
U0(t, x) may be taken in the class of upper semi-
continuous set-valued strategies with synthesized
system (13) treated as a differential inclusion
(Krasovski, 1964). The last move may lead to
sliding regimes and chattering control. Solutions
involving chattering controls were discussed in
detail in (Zelikin and Borisov, 1994).

Guaranteed state estimation. The generalization
of DP also allowed to develop a coherent non-
stochastic theory of guaranteed identification and
state estimation introduced simultaneously in
USA (Witsenhausen in 1968, F.Schweppe in 1968
and 72) and USSR (N. N. Krasovski (1968),
A. B. Kurzhanski (1970; 1977)). In applied form
similar methods had been actively developed and
used in guidance of spacecraft vehicles (M. L. Li-
dov (1971; 1984), I. A. Boguslavski (1970), P. E. Elyas-
berg et al. (1980)). Further developments were



due to F. L. Chernousko (1994), V. M. Kunt-
sevich (1992), and B. T. Polyak (1980), with
numerical techniques emphasized in publications
(Kurzhanski and Vályi, 1997; Kostousova, 2001).

Remark The seminal papers of A. N. Kolmogorov
(1941) and N. Wiener (1949) on extrapolation and
interpolation of stationary time series led to the
introduction of the widely known “Wiener filter”.
A further step was made by R. Kalman (Kalman,
1960) who had introduced a separate equation for
the measurement device and produced a system
of differential equations for the (now celebrated)
“Kalman filter” which in closed form gave a re-
current description of the linear-quadratic esti-
mate for systems corrupted by Gaussian noise. His
related work on controllability and observability
was also announced at the first IFAC Congress
in Moscow in 1960 (Kalman, 1960). However a
considerable number of problems in control, nav-
igation and related areas are such that the dis-
turbances and uncertainties in the model and
system inputs do not allow any statistical de-
scription, being unknown but bounded with given
bounds.This created a demand for an estimation
theory under information assumptions other than
in the Wiener–Kalman filters. This precisely was
the theory of guaranteed or set-membership state
estimation.

The theory of guaranteed state estimation was
further developed for many classes of applied
problems (Milanese, 1995). It is a cornerstone
for treating control problems under incomplete
measurement information.

The theory of Dynamic Programming is also
among the basic tools for developing the theory
of game-theoretic problems of dynamics which al-
lows to treat problems of guidance and trajectory
tracking under disturbances of various kind. These
will be discussed below in Section 6. But before
passing to the latter we shall first discuss some
topics closely related to the Dynamic Program-
ming approach.

4. OTHER NEW IDEAS. SUFFICIENCY
CONDITIONS FOR OPTIMALITY. SOLVING

DEGENERATE PROBLEMS

Throughout the advent of the Maximum Prin-
ciple and the Dynamic Programming there ap-
peared some other new ideas based on sufficient
conditions of global optimality for control pro-
cesses and related mathematical techniques. The
main instrument of this approach is the so-called
bounding function V(t, x). Its assignment yields
the following constructions:

R(t, x, u) = ∂V/∂t+

+ (∂V/∂x, f(t, x, u))− f0(t, x, u);
G(x) = F (x) + V(ϑ, x);

ζ0(V) = (u∗0(t), x∗(t)) =
= argmax{R(t, x, u)|(u, x) ∈ D(t)}, t ∈ A;

l(V) = min
x

G(x)− V(τ, xτ )−

−
∫ ϑ

τ

max{R(t, x, u)|(u, x) ∈ D(t)}dt;

u∗(t, x) = argmax
u

R(t, x, u);P (t, x) =

max
u

R(t, x, u);

∆(V) =
∫ ϑ

τ

[max
x

P (t, x)−min
x

P (t, x)]dt+

+max
x

G(x)−min
x

G(x),

where f(t, x, u) is the right-hand side of equa-
tion (4); f0(t, x, u), ϕ(ϑ, x) are the integrand and
terminal function in the optimality criterion (5);
(f, v) stands for the inner Euclidean product and
σ = ϑ.

Sufficient Conditions of Optimality. The process
ζ∗(V) is an optimal process,ζ∗(V) = (u0(t), x0(t)) =
ζ∗, when it is an admissible process: ζ∗(·) =
(u∗(·), x∗(·)) ∈ D and Proposition A is true:

ζ0(u0(t), x0(t)) = ζ∗(V) = (u∗(·), x∗(·)) =
= max{R(t, x, u)|(u, x) ∈ D(t)}.

A bounding function V is further named to be the
solving function. Note that if a controlled process
ζ(t) = {u(t), x(t)} ∈ D(t) is admissible means
it must satisfy the constraints on controls u and
states x, whether preassigned or given on-line.

In particular, the necessary conditions for opti-
mality — the equality u = u∗(V), are as follows:

Rx(t, x0(t), u0(t)) = 0,

R(t, x0(t), u0(t)) = max{R(t, x0(t), u)|u ∈ D(x)}
are the equations of Pontryagin’s maximum prin-
ciple. Pontryagin’s adjoint vector-function ψ co-
incides with the gradient of function V along the
trajectory x0(t), namely, (see notations of Section
1) ∂V(t, x0(t))/∂x = ψ(t) .

For any bounding function V(t, x) the functional
l(V) is a lower bound of the functional J on D and
J(ζ0) = minζ J(ζ) = maxV l(V).
A closed-loop control u∗(t, x) is approximately
optimal with an estimate

J(u∗(t, x), x∗(·))−min
u

J(u(t, x), x(·)) ≤ ∆(V),
∀τ , xτ , for any function V.
The closed-loop control u(t, x) = u∗(t, x) is op-
timal and the bounding function V is the Bell-
man “value function” V (t, x), when P (t, x) = 0,
G(x) = 0. We then come to the Hamilton–Jacobi–
Bellman (HJB) equation. The key idea of this



approach is a total decomposition of the controlled
optimization problem with respect to time. This
functional problem is reduced to a parametric
family of elementary problems on maximizing the
function of state and controlR(t, x, u) with t being
a parameter. The optimal trajectory x0(t) and
the control programm u0(t) are defined by the
equalities of Proposition A.

Within this maximization the control and state
(u, x) are free of the equations of system dynam-
ics. A process ζ∗(ϕ) is defined with the accuracy
of function V(t, x), which is selected such that
the result of (u∗(t), x∗(t)) of this maximization
satisfies the dynamic equations (4). The methods
of such selection are the main issue in the given
approach.

The solutions through the method of variations
which yield conditions for only a local minimum,
are actually somewhat incomplete as compared
with the present approach. The logical scheme
of the present method also does not require the
existence of a desired optimal process in some a
priori fixed class of functions unlike the method
of variations. The global method under discussion
made possible to find and provide necessary math-
ematical techniques for new classes of solutions to
variational problems with rather exotic properties
which however are typical for many applied is-
sues. The Sufficient Condition of Optimality keeps
the function V undefined. Its additional definition
through various methods is precisely the essential
part of the solutions and presents a broad field for
new inventions and using new methods. In partic-
ular, it produces effective techniques for solving
the so-called degenerate problems where neither
the method of variations nor the Hamilton–Jacobi
method may be sufficiently effective. Considera-
tions of simplicity and clarity play an important
role in formulating the basics of the approach.
However these may lead to a loss of their general-
ity. At the same time a fundamental question does
arise which is whether a generalization of these
sufficiency conditions would allow to make them
both necessary and sufficient. At this moment
there are some positive answers to this question.

The techniques and approaches of this section
are due to V. F. Krotov (1962) (see Krotov,
1996; Krotov and Gurman, 1973). An interested
reader may find the discussion of related results
in indicated references.

The earlier ideas already include elements of the
presented approach. Thus the method of La-
grange’s multipliers as applied to the equations
of the controlled process may be interpreted as
the first method of decomposition. However, this
method is applicable to the problem of abso-
lute minimum only when the lower bound l(V)
is defined for V = ψ(t)x. The Hamilton–Jacobi

method may also can be considered as an appli-
cation of special “solving functions”. It is a clear-
cut method for assigning function V, though it
may not cover all possible applications of this
theory. The nearest to this theory are the ideas
of C. Caratheodory. But methods of introducing
solving functions which lie beyond the Hamilton–
Jacobi techniques were not under consideration.

Degenerate Problems and Singular Solutions. De-
generate problems are those barely solvable by
regular methods of control theory. There may be
two main causes for that: (i) an optimal solu-
tion may be absent in the “ordinary” class of
admissible processes, while the existence of the
latter is necessary for applying regular methods
and (ii) the equations of the maximum principle
may happen to be degenerate and therefore do
not produce enough information for obtaining the
solution.

In case (i) the optimal solution may be found as a
minimizing sequence. We consider here two types
of such sequences: those with infinite accumula-
tion of control switchings (the so-called sliding
regimes), and those with discontinuous trajecto-
ries, including the case of infinite accumulation
of discontinuity points. There are three ways to
complete the optimization model over the sliding
regimes. The first is to introduce a generalized
process of the “flow” type (L.C.Young,J.L.Rubio).
The second is a reduction of the variational prob-
lem (in the form of minimizing terminal cost):

ϕ(x(ϑ)) = min; ẋ = f(t, x, u); u ∈ U,

to a “relaxed” problem:

ϕ(x(ϑ)) = min; ẋ = F(t, x, u); u ∈ U,

where F(t, x) is the closed convex hull of set
F (t, x) = f [t, x, U ] (Filippov, 1959; Gamkre-
lidze, 1969; Ioffe and Tikhomirov, 1974). The third
approach is based on the technique of the Suf-
ficient Conditions for Optimality. As opposed to
the other two, this approach may be applied not
only to sliding regimes but also to discontinuous
solutions, as well as to more complicated minimiz-
ing sequences. The related theory of discontinuous
or degenerate solutions and sliding regimes was
elaborated by (Krotov, 1996; Krotov and Gur-
man, 1973; Dykhta, 1979).

5. VARIATIONAL PROBLEMS IN FLIGHT
DYNAMICS

The first of such problems was stated by G.Hammel
in 1927: it was to find the control program for
rocket engine thrust during a vertical ascent in the
atmosphere to achieve a maximum final altitude.
A complete solution of this problem was obtained
by D. E. Okhotsimskii (1946). Here the controlled



process was the motion of the rocket within given
time interval [τ, ϑ] with the state space variables
h, V , m and control variable βf . This result was
significant for mathematical theory of control as
well as for an understanding of the specifics of
optimal trajectories of booster-rockets. The prob-
lem has some features which are not typical at
all for Calculus of Variations, but are very typi-
cal for modern problems with constraints on the
controlling functions. The author here proposed a
new method of “direct investigation of variation”
for such problems. The optimal trajectory, is syn-
thesized from the following regime sequences: a
motion with maximal admissible value of engine
thrust; an ascent, realizing an optimal function
V (h), and a free ascent with P = 0.

In paper of D.E.Okhotsimskii and T.M.Eneyev
(1957) the problem of optimal launch of the
first sputnik satellite and optimal selection of
the stages of the booster-rocket was considered.
These papers, together with the investigation of
V. A. Egorov (1958) on optimal rocket trajec-
tories, formed the primary amount of knowledge
for understanding the synthesis of trajectories and
the necessary parameters of the booster-rocket for
the first sputnik satellite at the modelling level.

Many interesting papers, devoted to problems in
flight dynamics, have been published in journals
and other sources that are not readily accessible.

We further consider a degenerate problem of
the optimal powered ascent of an aircraft which
played an important role in the theory of opti-
mal flight dynamics. The process being controlled
here is the motion of an aircraft with constant
mass throughout time interval [τ, ϑ] with constant
mass, state space variables h, V and control vari-
able θ from an initial state to a dynamic state.
I. V. Ostoslavski and A. A. Lebedev (1946) ob-
tained an optimal function V (h) (subsonic), real-
ized for an aircraft ascent. Independently, A. Miele
later found the second, supersonic function V (h)
and proved that the optimal trajectory is synthe-
sized with either minimal or maximal admissible
values of the angle θ.

Sufficient optimality conditions introduced, by
V. F. Krotov and M. M. Khrustalev specify this
synthesis uniquely, having developed the results
under following presumptions: the aircraft mass
is variable, available are two control variables —
the angle θ and the thrust parameter βf . There is
a possibility of considering the problem within a
fixed range and with arbitrary g(h).Therewith, a
principal construction of the optimal trajectory is
maintained and is completed with the equality:
βf = max. Such an expansion allows us to
construct analytically the optimal trajectories for
the wide range of the rockets and the aircraft. It
is interest to compare this solution with a result

D.E.Okhotsimski: the mass consumption βf must
be variable to realize the optimal function V (h).
But this fact does not coincide with the solution
described here: βf = max = constant, but the
optimal function V (h) is maintained with the
second control parameter — the angle θ.

The basic technique for optimal synthesis of air-
craft trajectories in setting (1), (2) is Pontryagin’s
Maximum Principle described below. However,
the hidden presence of degenerate problems of
the above requires additional procedures, since
the optimal solutions may not be unique; the
adjoint variable ψ of the maximum principle may
be insufficient for finding the solution; the absence
of robustness may require techniques of regular-
izing respective numerical schemes. All these ele-
ments,if coped with, will finally yield a qualitative
structure of the optimal trajectory and additional
means for numerical solution.

A large number of investigations on trajectories
for entering the atmosphere of the Earth and
other planets within the setting of (2), (3), as
well as within reasonably simplified settings, al-
lowed to develop an understanding of how to
synthesize algorithms for the descent of space-
craft, (see Okhotsimskii and Golubev, 1975; Yaro-
shevski, 1988; Okhotsimsky, 1964). The scope of
this presentation does not allow us to discuss the
last problem in worthy detail as well as the those
of optimal control of interorbital transitions and
other space maneuvres (Gurman, 1966).

At this point we would like to mention the ex-
ceptional role of the Keldysh Institute of Applied
Mathematics in developing control algorithms for
space research. A review of these achievements is
given in reference (Popov and Akim, 2003).

6. CONTROL SYNTHESIS UNDER
UNCERTAINTY

A considerable amount of work was done by the
control community in coping with uncertainty and
incomplete information in the field of control.

The adopted scheme is based on constructing su-
perpositions of value functions for open-loop con-
trol problems. In the limit these relations reflect
the Principle of Optimality under set-membership
uncertainty. This principle then allows one to
describe the closed loop reach set as a level set
for the solution to the forward HJBI (Hamilton–
Jacobi–Bellman–Isaacs) equation. The final re-
sults are then presented either in terms of value
functions for this equation or in terms of set-
valued relations.

Schemes of such type have been used in synthe-
sizing solution strategies for guaranteed control,



dynamic games and related problems of feedback
control under realistic data, including those of
control under incomplete information and mea-
surement feedback control. The control schemes
were constructed in backward time in more or less
equivalent forms of solvability sets, stable bridges
of N. N. Krasovski (1968; 1998), the alternated
integrals of L. S. Pontryagin (1980), the scheme
of B. N. Pschenichniy in Kiev (Pschenichniy and
Ostapenko, 1992). Effective and original dynamic
programming-type constructions were developed
in USA by R. Isaacs, P. Varaiya, G.Leitmann,
R. J. Elliot and N. J. Kalton, T.Basar and others,
as well as in France, by A. Blaquiere and later,
through the notion of H∞-control by P.Bernhard
and the idea of capture basins by J. P. Aubin and
his associates P.Saint-Pierre, M.Quincampoix and
others.

Uncertain dynamics. The Standard Model. This is
given by differential equation

ẋ = f(t, x, u, v), (14)

with properties of continuous function f defined
as in control theory, with inputs representing con-
trols u to be specified and unknown disturbances
(v). Here x ∈ IRn as always is the state and
u ∈ IRp is the control that may be selected either
as an open loop control — OLC — a measurable
function of time t, restricted by the inclusion

u(t) ∈ P(t), a.e.,

or as a closed-loop control — CLC — a feedback
strategy which is either sought for either as a multi
valued map

u = U(t, x) ⊆ P(t).
or as a single-valued function u(t, x) ∈ Uc which
ensure existence in some appropriate sense of
solutions to differential inclusion

ẋ ∈ f(t, x, U(t, x), v), (15)

or to differential equation

ẋ = f(t, x, u(t, x), v) (16)

respectively.

Here v ∈ IRq is the unknown input disturbance
with values

v(t) ∈ Q(t), a.e. (17)

P(t), Q(t) are set-valued continuous functions
with compact values, (P ∈ comp IRp, Q ∈
comp IRq). Given also is a closed target set M.

The Problem of Control Synthesis under Uncer-
tainty is to find an admissible feedback control
strategy U = u(t, x) or U = U(t, x) which steers
system (14) to reach the target set M despite
the unknown disturbances v. Such problems are
usually treated within the notions of game-type
dynamics introduced by R. Isaacs.

Typical admissible classes of feedback controls
and trajectory solutions involved for the given
problem are due to N. N. Krasovski in the single-
valued case (Krasovski, 1968; Krasovski and Sub-
botin, 1998) and A. F. Filippov in the multivalued
case (Filippov, 1959). It is N. N. Krasovski who
introduced the most developed formalized and
integrated solution theory for problems in “game-
type” controlled dynamics, which was developed
further by him and his associates for a broad class
of control problems under uncertainty or conflict.

Continuing with the last problem, we are to find
the value function

V (t, x) = min
U

max
x(·)

{d2(x[t1],M) |
U ∈ Uc, x(·) ∈ XU}.

Here XU is the variety of all trajectories of equa-
tion (15) or (16).

The formal solution equation for the problem
is the Hamilton–Jacobi–Bellman–Isaacs (HJBI)
equation

Vt +min
u

max
v

(Vx, f(t, x, u, v)) = 0, (18)

with minmax often assumed interchangeable and
with control u(t, x) to be found from the solution
to the minmax problem in (18). However in reality
this is just a symbolic relation as the function
V (t, x) in general turns out to be nondifferen-
tiable.

The solutions to the control synthesis problem
under uncertainty are then found, for example,
through procedures of constructing solvability
tubes in the form of stable bridges

W [t] = {x : V (t, x) ≤ 0},
as introduced by N. N. Krasovski with control
strategy further found from conditions of “ex-
tremal aiming”:

u(t, x) = argmin
u

{max
v

d(x,W [t])},
and trajectories interpreted as “constructive mo-
tions” of (Krasovski and Subbotin, 1998). Here
V (t, x) is a generalized solution to equation (18).

Along with the theory, the numerical methods
of constructing solutions were developed. Sev-
eral global successive approximation numerical
schemes were proposed as well schemes to approx-
imate the deterministic control problem or game
by a stochastic discrete-time process.

The game-theoretic approaches in conjunction
with set-valued techniques and new results in non-
linear analysis allowed to formalize basic problems
of control under measurement feedback and un-
known but bounded disturbances.

Various formalizations and applications of the
theory of control under incomplete information



may be found in books and papers by N. N.
and A. N. Krasovski (1994), A. B. Kurzhanski
(1977), Yu. S. Osipov and A. V. Kryazhimski
(1995), F. L. Chernousko and A. A. Melikyan
(1978), V. M. and A. V. Kuntsevich (2002),
B. N. Pschenichniy and V. V. Ostapenko (1992).
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Birkhäuser. Boston.

Letov, A. M. (1969). Flight dynamics and control.
Nauka. Moscow. In Russian.

Lidov, M. L. (1971). Mathematical analogy be-
tween optimal problems for trajectory cor-
rection and problems of choice of measure-
ments. Kosmicheskiye issledovaniya (Cos-
mic Research) 9(5). In Russian.

Lidov, M. L. (1984). Minimax continuous parame-
ter estimation problem. Kosmicheskiye issle-
dovaniya (Cosmic Research) 22(4). In Rus-
sian.

Melikyan, A. A. (1998). Generalized charac-
teristics of first-order PDE’s. Application
in optimal control and differential games.
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